2025 年 CWMI 的几何题的解答(二)

1. 题目

如图,设 ABC\triangle ABC 的内心为 II,点 EEFF 分别在边 ACACABAB 上,满足 BIF=CIE\angle BIF = \angle CIE。设 ll 为过 II 且平行于 BCBC 的直线,设点 EEFF 关于直线 ll 的对称点分别为 XXYY。证明:XBC=YCB\angle XBC = \angle YCB

题目

2. 分析

这个题可以使用复数法进行处理。以内切圆为单位圆,可以得到 ABC\triangle ABC 的顶点对应的复数。关于 ll 对称可以简化为共轭运算。

利用 BIF=CIE\angle BIF = \angle CIE 和点 FFABAB 上,可以求出点 FF 对应的复数。点 EE 的处理类似。

3. 解答

3.1. 建立复平面

引入以 II 为原点、ll 为实轴的复平面。设 ABC\triangle ABC 的内切圆的半径为 11,其与 BCBCCACAABAB 的切点依次为 RRSSTT,对应的复数依次是 r=ir=-isstt

设点 AABBCCEEFFXXYY 对应的复数依次是 aabbccε\varepsilonffxxyy,则 x=εx = \overline{\varepsilon}y=fy = \overline{f},以及

a=2t+s,a=2tst+sb=2ti,b=2titic=2si,c=2sisi \begin{aligned} \overline{a} = \frac{2}{t+s}, & \quad a = \frac{2ts}{t+s} \\[2ex] \overline{b} = \frac{2}{t-i}, & \quad b = -\frac{2ti}{t-i} \\[2ex] \overline{c} = \frac{2}{s-i}, & \quad c = -\frac{2si}{s-i} \end{aligned}

解答

3.2. 计算点 E、F

FIB=CIE=θ\measuredangle FIB = \measuredangle CIE = \theta,则

f=bλeiθ=ka+(1k)bf = b \cdot \lambda \, \mathrm{e}^{-i\theta} = k\,a+(1-k)\,b,其中 λ,kR\lambda,k \in \mathbb{R}

因此

{bλeiθ=ka+(1k)bbλeiθ=ka+(1k)b \left\{\begin{aligned} & b \cdot \lambda \, \mathrm{e}^{-i\theta} = k\,a+(1-k)\,b \\ & \overline{b} \cdot \lambda \, \mathrm{e}^{i\theta} = k\,\overline{a}+(1-k)\,\overline{b} \end{aligned}\right.

整理得

{λbeiθ+k(ba)=bλbeiθ+k(ba)=b \left\{\begin{aligned} & \lambda \cdot b \, \mathrm{e}^{-i\theta} + k\cdot (b-a) = b \\ & \lambda \cdot \overline{b} \, \mathrm{e}^{i\theta} + k\cdot (\overline{b}-\overline{a}) = \overline{b} \end{aligned}\right.

解得

λ=bbabbabeiθbabeiθba=abab(ba)beiθ(ba)beiθ \begin{aligned} \lambda & = \frac{\begin{vmatrix} b & b-a \\ \overline{b} & \overline{b}-\overline{a} \end{vmatrix}}{\begin{vmatrix} b \, \mathrm{e}^{-i\theta} & b-a \\ \overline{b} \, \mathrm{e}^{i\theta} & \overline{b}-\overline{a} \end{vmatrix}} \\[3ex] & = \frac{a\overline{b}-\overline{a}b}{(\overline{b}-\overline{a})\,b\,\mathrm{e}^{-i\theta}-\left(b-a\right)\overline{b}\,\mathrm{e}^{i\theta}} \end{aligned}

其中

abab=4t(s+i)(t+s)(ti)ba=2(s+i)(t+s)(ti)ba=2t2(s+i)(t+s)(ti) \begin{aligned} a\overline{b}-\overline{a}b & = \frac{4t(s+i)}{(t+s)(t-i)} \\[2ex] \overline{b}-\overline{a} & = \frac{2(s+i)}{(t+s)(t-i)} \\[2ex] b-a & = -\frac{2t^2(s+i)}{(t+s)(t-i)} \end{aligned}

带入化简可得

λ=titeiθieiθ \lambda = \frac{t-i}{t\,\mathrm{e}^{i\theta}-i\,\mathrm{e}^{-i\theta}}

同理,设 ε=cμeiθ=la+(1l)c\varepsilon = c\cdot \mu \,\mathrm{e}^{i\theta} = l\,a+(1-l)\,c,其中 μ,lR\mu,l \in \mathbb{R},可得

μ=siseiθieiθ \mu = \frac{s-i}{s\,\mathrm{e}^{-i\theta}-i\,\mathrm{e}^{i\theta}}

3.3. 证明角相等

要证明的结论

CBX=YCB    xbcb÷bcycR \measuredangle CBX = \measuredangle YCB \iff \frac{x-b}{c-b}\div \frac{b-c}{y-c} \in \mathbb{R}

注意到 bcRb-c\in\mathbb{R},因此

CBX=YCB    (xb)(yc)R    (εb)(fc)R \begin{aligned} \measuredangle CBX = \measuredangle YCB & \iff (x-b)(y-c) \in \mathbb{R} \\[1ex] & \iff \left(\overline{\varepsilon}-b\right)\left(\overline{f}-c\right) \in \mathbb{R} \end{aligned}

化简可得

(εb)(fc)=(μceiθb)(λbeiθc)=(siseiθieiθ2sieiθ2titi)=(titeiθieiθ2tieiθ2sisi)=2(ti+tsi)eiθ+2teiθ(ti)(seiθieiθ)=2(si+tsi)eiθ+2seiθ(si)(teiθieiθ) \begin{aligned} & \, \left(\overline{\varepsilon}-b\right)\left(\overline{f}-c\right) \\[2ex] = & \, \left(\mu\,\overline{c}\,\mathrm{e}^{-i\theta}-b\right) \left(\lambda\,\overline{b}\,\mathrm{e}^{i\theta}-c\right) \\[2ex] = & \, \left(\frac{s-i}{s\,\mathrm{e}^{-i\theta}-i\,\mathrm{e}^{i\theta}} \cdot\frac{2}{s-i} \cdot\mathrm{e}^{-i\theta} -\frac{-2ti}{t-i}\right) \\[2ex] \phantom{=} & \,\qquad \cdot \left(\frac{t-i}{t\,\mathrm{e}^{i\theta}-i\,\mathrm{e}^{-i\theta}} \cdot\frac{2}{t-i} \cdot\mathrm{e}^{i\theta} -\frac{-2si}{s-i}\right) \\[3ex] = & \, \frac{2\left(t-i+tsi\right)\mathrm{e}^{-i\theta}+2t\,\mathrm{e}^{i\theta}} {\left(t-i\right)\left(s\,\mathrm{e}^{-i\theta}-i\,\mathrm{e}^{i\theta}\right)} \\[2ex] \phantom{=} & \,\qquad \cdot \frac{2\left(s-i+tsi\right)\mathrm{e}^{i\theta}+2s\,\mathrm{e}^{-i\theta}} {\left(s-i\right)\left(t\,\mathrm{e}^{i\theta}-i\,\mathrm{e}^{-i\theta}\right)} \end{aligned}

接下来验证

(εb)(fc)=(εb)(fc) \overline{\left(\overline{\varepsilon}-b\right)\left(\overline{f}-c\right)} = \left(\overline{\varepsilon}-b\right)\left(\overline{f}-c\right)

即可。

验证过程

=(εb)(fc)=2(1t+iits)eiθ+2teiθ(1t1i)(1seiθ1ieiθ)=2(1s+iits)eiθ+2seiθ(1s1i)(1teiθ1ieiθ)=2(s+tsii)eiθ+2seiθ(it)(ieiθseiθ)=2(t+tsii)eiθ+2teiθ(is)(ieiθteiθ)=(εb)(fc) \begin{aligned} & \phantom{=} \overline{\left(\overline{\varepsilon}-b\right)\left(\overline{f}-c\right)} \\[2ex] & =\frac{2\left(\frac{1}{t}+i-\frac{i}{ts}\right)\mathrm{e}^{i\theta}+\frac{2}{t}\,\mathrm{e}^{-i\theta}} {\left(\frac{1}{t}-\frac{1}{i}\right)\left(\frac{1}{s}\,\mathrm{e}^{i\theta}-\frac{1}{i}\,\mathrm{e}^{-i\theta}\right)} \\[2ex] \phantom{=} & \,\qquad \cdot \frac{2\left(\frac{1}{s}+i-\frac{i}{ts}\right)\mathrm{e}^{-i\theta}+\frac{2}{s}\,\mathrm{e}^{i\theta}} {\left(\frac{1}{s}-\frac{1}{i}\right)\left(\frac{1}{t}\,\mathrm{e}^{-i\theta}-\frac{1}{i}\,\mathrm{e}^{i\theta}\right)} \\[3ex] & = \frac{2\left(s+tsi-i\right)\mathrm{e}^{i\theta}+2s\,\mathrm{e}^{-i\theta}} {-\left(i-t\right)\left(i\,\mathrm{e}^{i\theta}-s\,\mathrm{e}^{-i\theta}\right)} \\[2ex] \phantom{=} & \,\qquad \cdot \frac{2\left(t+tsi-i\right)\mathrm{e}^{-i\theta}+2t\,\mathrm{e}^{i\theta}} {-\left(i-s\right)\left(i\,\mathrm{e}^{-i\theta}-t\,\mathrm{e}^{i\theta}\right)} \\[2ex] & = \left(\overline{\varepsilon}-b\right)\left(\overline{f}-c\right) \end{aligned}

命题得证。

4. 另一种解法

考虑 BIF\triangle BIFCIE\triangle CIE

BFsinBIF=IFsin12ABCCEsinCIE=IEsin12ACB \begin{aligned} \frac{BF}{\sin \angle BIF} & = \frac{IF}{\sin \frac{1}{2}\angle ABC} \\ \frac{CE}{\sin \angle CIE} & = \frac{IE}{\sin \frac{1}{2}\angle ACB} \end{aligned}

因此

BFCE=IFIEsin12ACBsin12ABC \frac{BF}{CE} = \frac{IF}{IE}\cdot \frac{\sin \frac{1}{2}\angle ACB}{\sin \frac{1}{2}\angle ABC}

设点 FF 关于 IBIB 的对称点为 KK,点 EE 关于 ICIC 的对称点为 LL,则 KKLL 都在 BCBC 上。

llABABACAC 交于点 MMNN,则

YIK=FIKFIY=2(FIBFIM)=2BIM=ABC \begin{aligned} \angle YIK & = \angle FIK - \angle FIY \\ & = 2(\angle FIB-\angle FIM) \\ & = 2\angle BIM \\ & = \angle ABC \end{aligned}

同理可知 XIL=ACB\angle XIL = \angle ACB

另一种解法

注意到

BIK=BIF=CIE=CIL \angle BIK = \angle BIF = \angle CIE = \angle CIL

因此

BKBLCKCL=BI2CI2 \frac{BK\cdot BL}{CK\cdot CL} = \frac{BI^2}{CI^2}

结合前面的结论可得

BLCK=CLBKBI2CI2=CEBFBI2CI2=IEIFsin12ABCsin12ACBsin212ACBsin212ABC=IEsin12ACBIFsin12ABC=LXYK \begin{aligned} \frac{BL}{CK} & = \frac{CL}{BK}\cdot \frac{BI^2}{CI^2} = \frac{CE}{BF}\cdot \frac{BI^2}{CI^2} \\[2ex] & = \frac{IE}{IF} \cdot \frac{\sin \frac{1}{2}\angle ABC}{\sin \frac{1}{2}\angle ACB} \cdot \frac{\sin^2 \frac{1}{2}\angle ACB}{\sin^2 \frac{1}{2}\angle ABC} \\[2ex] & = \frac{IE\cdot \sin \frac{1}{2}\angle ACB}{IF\cdot \sin \frac{1}{2}\angle ABC} \\[2ex] & = \frac{LX}{YK} \end{aligned}

注意到

=BLX=BLI+ILX=(CIL+12ACB)+(9012ACB)=CIE+90 \begin{aligned} & \phantom{=} \angle BLX \\[0.5ex] & = \angle BLI + \angle ILX \\ & = \left(\angle CIL + \frac{1}{2}\angle ACB\right) + \left(90^\circ-\frac{1}{2}\angle ACB\right) \\[1ex] & = \angle CIE + 90^\circ \end{aligned}

同理可得,CKY=BIF+90\angle CKY = \angle BIF + 90^\circ,因此 BLX=CKY\angle BLX = \angle CKY

综上可知 BLXCKY\triangle BLX\sim \triangle CKY,于是 XBC=YCB\angle XBC = \angle YCB,命题得证。